FIRE SAFETY

Fire

Fire is a rapid chemical reaction of oxidant with fuel accompanied by the release of energy, indicated by incandescence or flame.

For a fire to happen, the following elements are essential

- Oxidiser to sustain combustion.
- Heat to reach ignition temperature.
- Fuel or combustible material.

This results in a chemical chain reaction which starts a fire. Removing any of these elements will extinguish the fire.

During a fire heat transfer occurs by

- Conduction transfer of heat within the material itself.
- Convection transfer of heat by the physical movement of hot masses of air.
- Radiation refers to the emission of heat in the form of electromagnetic waves.

- Ignition is the process of initiating self sustained combustion.
- The ignition temperature of a substance is the minimum temperature to which it must be heated for it to ignite.

Ignition can occur by

- Electrically powered equipment- Arcing, damaged wiring, over heating of cables due to excess loads, loose electrical connections, heat from electric bulbs etc.
- Open flame
- Hot surfaces
- Sparks from welding operations
- Chemical reaction between incompatible chemicals
- Smoking
- Batteries

In a flammable liquid fire, it is the vapours released from the surface of the liquid that burns.

Flash point is the lowest temperature at which a liquid produces enough vapor to form an ignitable mixture. E.g., Diethyl ether (-45 °C) Methyl alcohol (11.1 °C)

Lower the flash point of a flammable liquid, greater the hazard.

On the basis of the type of fuel, fires are classified into the following

Class A Fires — solid combustible materials of organic nature such as wood, paper, rubber, plastics, etc.

Class B Fires — flammable liquids

Class C Fires — flammable gases under pressure including liquefied gases.

Class D Fires — combustible metals, such as magnesium, sodium, potassium, etc,

Fire can be extinguished by

• Cooling the fuel by removing heat (e.g., by applying water).

Fire can be extinguished by

• Smothering by cutting off oxygen supply (e.g., by applying foam, carbon dioxide).

Fire can be extinguished by

- Starving the fire by removing the fuel.(e.g., stopping gas flow during a pipeline fire).
- Inhibition by stopping the chain reaction.(e.g., by applying dry chemical powder).

Type of extinguishers and the classes of fire for which they can be used	
Water	Class A fire
Dry chemical powder	Class B & C fire
Foam	Class A & B fire
Carbon dioxide	Class B & C fire
Special dry powder	Class D fire

Water Extinguisher

- They are used for Class A fires.
- Water removes heat and extinguish the fire.
- Water must not be used on fires involving live electrical equipment as it can cause electrocution.
- Water must not be used on metal fires.

Carbon Dioxide Extinguisher

- CO₂ extinguishers are mainly used for Class B and C fires.
- CO₂ extinguish the fire by displacing oxygen in the surrounding air.

Carbon Dioxide Extinguisher

- CO₂ is not suitable for fires involving metals.
- It's principal advantage is that it does not leave any residue.
- Can be used on electrical/electronic equipment.

AFF Foam Type Extinguishers

- The extinguishing agent is aqueous film forming concentrate in water which forms air foams when discharged through an aspirating nozzle.
- It has a blanketing effect excluding oxygen from the surface of the fuel as it spreads on the fuel.
- Prevents vapour formation from the surface of the burning liquid.

AFF Foam Extinguishers

- It develops a floating aqueous film of solution under the foam on fuel surface and cool the burning surface.
- AFF extinguishers must not be used on electrical and metal fires.

Dry Chemical Powder(DCP) Extinguisher

- The main base chemicals used in DCP extinguishers are sodium bicarbonate and potassium bicarbonate.
- DCP extinguishers puts out fire by coating the fuel surface with chemical powder.
- This separates the fuel from the oxygen in the air and prevent vapor formation.

Dry Chemical Powder(DCP) Extinguisher

- The powder also interrupts the chemical chain reaction of fire.
- The disadvantage is that it leaves residue particularly making it difficult to clean up in case of sensitive equipment.

Special Dry Powder Extinguisher

- Special extinguishing agents are used for extinguishing metallic fires.
- Dry powders extinguish the fire by forming a crust on metal surface excluding air and also absorbs heat from the metal surface.
- E.g., Blended sodium chloride based dry powder, ternary eutectic chloride(TEC) powder, graphite etc.

Propellant for extinguishing media.

- The extinguishing media is expelled from the extinguisher by carbon dioxide gas contained in a cartridge inside the extinguisher.
- CO₂ extinguisher contains liquefied carbon dioxide. The gas present in the vapour space above the liquefied CO₂ itself acts as the propellant. So no separate cartridge is used in CO₂ extinguisher.

Extinguisher Operation

- Pull/remove the locking clip.
- Aim the nozzle at the base of the fire.
- Press the knob down.
- Starting from the edge of the fire sweep the nozzle from side to side advancing ahead.

Operating Foam type Extinguisher

- When using AFFF on a container of burning liquid the foam must be directed towards the back or side wall of the container and allowed to spread over the surface.
- Where the fire is in a liquid spill the foam must be allowed to drop slightly ahead of the fire and moved forward with a side to side movement of the nozzle.

Extinguisher Operation

- Pull/remove the locking pin.
- Aim the nozzle at the base of the fire.
- Press the lever down.
- Starting from the edge of the fire sweep the nozzle from side to side advancing ahead.

Operating a CO₂ extinguisher

- Remove the locking pin.
- Aim the horn at the base of the fire.
- Open the valve by turning it anticlockwise.
- Sweep the horn from side to side, gradually advancing ahead.

The successful use of a fire extinguisher depends on the following conditions:

- The extinguisher must be easily accessible and in good working order.
- The extinguisher must be the right type for the fire.
- The fire must be discovered in its incipient stage for the extinguisher to be effective.

Emergency Response

In case of a fire

• Actuate the manual fire alarm call point.

 Alert personnel nearby so that they can come to your help/inform security section.

- Determine what is burning.
- Use the right type of extinguisher for fighting the fire.
 Use the fire extinguisher only if you have attended practical training.
- Always position yourself with an exit or means of escape behind you before you attempt to use an extinguisher to put out a fire.

- If the person who notices the fire feels that it cannot be tackled by extinguishers, he can directly inform the fire station without delay.
- On hearing the alarm evacuate the building and assemble at the designated assembly point.
- As you evacuate close the doors of the rooms(do not lock) as this will slow down the spread of smoke and fire.

Emergency Response

• While moving out of the building always use stairways.

• Do not use lifts, they may fail mid way trapping people inside.

Precautions

 Keep fire doors of the staircase closed. If kept open, heat and smoke will enter the staircase during fire and prevent escape of occupants.

- Do not obstruct emergency equipment. Fire extinguishers must be easily accessible.
- Materials must not be stored in front of exits or along stairways blocking them.
- Know the exits in the laboratory and in the building.

• Display emergency contact numbers near the telephone.

THANK YOU